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Abstract. We have considered the dynamical evolution of cellular patterns controlled by a
stochastic Glauber process determined by the deviations of local cell topology from that of a
crystalline structure. Above a critical temperature evolution is towards a common equilibrium state
from any initial configuration, but beneath this temperature there is a dynamical phase transition,
with a start from a quasi-random state leading to non-equilibrium glassy freezing whereas an
ordered start rests almost unchanged. A temporal persistence function decays exponentially in
the high-temperature equilibrating state but has a characteristic slow non-equilibrium ageing-like
behaviour in the low-temperature glassy phase.

The hexagonal tiling is the best partition of the plane in equal cells. It solves both the packing
and the covering problems. It is the space-filling assembly of equal cells with the minimal
interfacial extension.

It is regular, perfect and beautiful. Surprisingly, however, it is never realized in natural
biological tissues where a relevant amount of disorder is always present [1, 2]. This is
reminiscent of the situation found in many covalently bonded solids, where, despite the lowest
energy state being crystalline, in practice amorphous glassy structures are the common quasi-
stable states [3]. Guided by this observation and by recent analysis of idealized infinite-ranged
spin glasses [4] and in a desire to provide both a linkage to studies of covalent glasses and a
minimalist model for understanding, we have studied the dynamics of the simplest ‘covalently
bonded’ network subject to a simple stochastic dynamics characterized by a minimal set
of control parameters, namely (i) deviations of local topology from crystalline and (ii) a
temperature. The model has similarities with those of the classic works of Weberet al [5] and
Wootenet al[6]§, but complements and extends those studies by emphasizing (and quantifying)
not only the freezing of single-time measures and slow relaxation, but also the apparent
non-equilibrating non-stationary (ageing) character of two-time correlation observables in the
glassy phase. It therefore provides a link between the two fields of glass studies as epitomized
by [4] on the one hand, and [5, 6] on the other. It should provide a valuable starting point
for further theoretical analysis of systems complementary to those studied in [4] and in recent
work on glass transitions in model systems with central forces [7]. It is also extendable, at
least in principle, to higher dimensions/more-armed vertices. Our study combines Monte
Carlo simulation and approximate analysis and concentrates on simple but novel one-time and
two-time observables, introduced to probe issues of the type emphasized in [4].

§ For further details we refer the reader to [2].
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Figure 1. (a) A topologically stable cellular partition (froth). (b) A T1 move.

In the hexagonal tiling each cell has six neighbours and three cells meet at a common
vertex. It is a regular two-dimensional, minimally connected pattern. More generally, we
can consider disordered cellular patterns with three-connected vertices such that the average
number of sides per cell is six (Euler’s theorem [2]). Locally, the degree of homogeneity can
be measured in terms of the number of sides per cell. Ifni is the number of sides of cell
i, thenqi = 6 − ni is a measure of its deviation from the hexagonal configuration. This
quantity is the topological charge of the cell and is related to the local curvature. Local vertex
rearrangements conserve the total topological charge but allow migration and the annihilation
of opposite charges on adjacent cells. When penalties are imposed for non-zero charges this
mechanism leads the system to self-organize.

Let us now turn to quantification. We characterize any structure by an ‘energy’ and
consider random sequential stochastic dynamics driven by changes in that energy. The energy
is a measure of the inhomogeneity in the structure. In the spirit of minimalism we take it to
be given by the ‘topological distance’ from the hexagonal lattice configuration:

E = µ2N =
N∑
i=1

(qi)
2 =

N∑
i=1

(6− ni)2. (1)

We consider a system conserving cell number (N ). It evolves by T1 moves, which are
topological transformations consisting of an exchange of neighbours between four cells (see
figure 1). Consider a T1 move performed on a system of four cells where the two adjacent cells
havena andnb sides and the two second-neighbour cells havenc andnd sides, respectively.
After the T1 move, the cells withna andnb sides lose one edge each, whereas the cells with
nc andnd sides each gain an edge. The change of the energy associated with this move is

1E(na, nb; nc, nd) = 2(2 +nc + nd − na − nb).
We consider dynamics of a Glauber–Kawasaki type, where the probability of this T1 move is
given by

5(na, nb; nc, nd) = 1

1 + exp(β1E(na, nb; nc, nd)) (1− δna,3)(1− δnb,3)(1− δc,d). (2)

This probability allows a dynamical evolution even at zero temperature (β = ∞) if it reduces
the energy or leaves it unchanged. In equation (2) the first twoδ-function terms have been
introduced to exclude moves that generate two-sided cells. The last term forbids moves which
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generate cells which are self-neighbours, preventing the formation of tadpoles. Thus neither
two-sided nor single-sided cells can arise if they are not present at the start.

Before considering the dynamics, let us consider the predictions of equilibrium. The
partition function is the sum over all the possible froths with Boltzmann weights. Some
limitations apply on the accessible values of theni .

For instance, the average number of neighbours〈n〉 is fixed to be equal to six [2]. Moreover,
two-sided cells are not admitted (therefore,ni > 2). Self-neighbouring cells are also not
admitted (which trivially impliesni < N ); other less trivial combinations ofni might also be
forbidden. In general, to find the sets of admissible{ni} which lead to possible froths is a very
difficult task.

We approximate the partition function:

Z(β, λ,N) '
N∏
j=1

N−1∑
nj=3

exp

[
− β

∑
i

(6− ni)2 − λ
∑
i

(6− ni)
]

whereλ is a Lagrange multiplier fixed by the constraint〈n〉 = 6. Correspondingly, the
probability of ann-sided cell in the system is

p(n) ' p(6) exp[−β(6− n)2 − λ(6− n)]. (3)

WhenN →∞ andβ = 0, λ = ln( 3
4) andp(n) = 16

27(
3
4)
n, with µ2 = 12.

To study the dynamics we performed extensive computer simulations on froths with
N = 100 172 (= 3172) cells and periodic boundary conditions. We started from two
different systems: (i) a very disordered network, obtained by performing 104N T1 moves
on edges chosen at random from an ordered hexagonal seed; (ii) a perfectly ordered pattern
(the hexagonal tiling). In the simulation, 1100N T1 moves were attempted, with a probability
given by equation (2), on edges chosen at random. First, we considered a moderately high
temperature. In figure 2(a) µ2 versus the number of attempted moves whenβ = 0.5 is shown
for the two starting froths. These systems evolve from the two initial states (i) and (ii) with
µ2 ' 13 andµ2 = 0† respectively, toward a final equilibrium configuration with a common
µ2 ' 1 reached after about 100N attempted moves. Second, we turned to a lower temperature.
In figure 2(b),µ2 is plotted versus the number of attempted moves forβ = 3. In this case, after
1100N attempted moves, the equilibrium configuration is not yet reached, the two patterns
generated from the two initial states (i) and (ii) are still statistically different, and the approach
toward a common equilibrium configuration is very slow.

In figure 3, p(n) and µ2 are plotted for several simulations performed at different
temperatures, starting from the two initial states (i) and (ii) and attempting 1100N moves.
At high temperatures (β−1 > 1) the two final distributionsp(n) andµ2 corresponding to
the starting configurations (i) and (ii) coincide and are in good agreement with the analytical
prediction [8]. The system has reached thermodynamical equilibrium and we designate the
state as a ‘liquid’. At low temperatures (β−1 < 1) thep(n) andµ2 reached no longer coincide.
The dynamics is slow and the system no longer reaches the thermodynamical equilibrium state
in the timescale studied. In the low-temperature region forT < O(1), an ordered start rests
almost unchanged and a random start seems to lead to a freezing withp(n) close to the form
given by equation (3) withβ = 2.4. Hence we identifyTd ' (2.4)−1 as the dynamical freezing
transition for the timescale studied and we designate the corresponding metastable phase as a
glass.

† The difference between the observation ofµ2 = 13 and the theoretical estimate of 12 presumably reflects the
approximations made in the partition function. At infinite temperatures (β = 0) the topological constraints have a
major importance and must be treated with more care: see, for instance, [8].
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Figure 2. (a) µ2 versus the number of attempted moves in units ofN at β = 0.5 with starting
configurations (i) and (ii) (triangles down and up). (b) β = 3. The lines are the theoretical
predictions for thermodynamical equilibrium.

In order to better characterize these two different dynamics at high and low temperatures,
we have also studied atwo-time persistence functionC(tw + τ, tw) [10]. It counts the fraction
of cells that have not been involved in a T1 move between the timetw andtw + τ . In figure 4
the persistence functions forβ = 0.5 and 108 are reported versusτ for several value oftw. At
high temperatures the persistence function appears time-translationally invariant and decays
exponentially fast as in aliquid, whereas at low temperatures it shows a slow ageing-like
behaviour as in aglass[4,9]. Thus, at low temperatures the system has not equilibrated, even
though the single-time measures are no longer evolving significantly.

Let us now turn to theoretical expectations forC and consider a given celli. The probability
that between timest and t + 1 one of its edges or one of the edges incident on its vertices
(2ni edges in total) is chosen (among the 3N edges in the system) to attempt a T1 move is
2ni(t)/3N . This T1 move is effectively performed with a probabilityAi(t) that depends on
the local configuration as in equation (2). The probability that a given celli is not involved in
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Figure 3. (a) µ2 versus temperature (T = β−1) with starting configurations (i) and (ii) (triangles
down and up) dynamically equilibrated for 1100N moves. The full curve is the theoretical
prediction at the thermodynamical equilibrium. (b) Side distributions (p(n)) at low temperatures
in the ‘glass phase’ (β = 3, 10, 100). The curve is the equilibrium prediction forβ = 2.4. (c)
Side distributions at high temperatures in the ‘liquid phase’ (β = 0, 0.5, 1). The full curves are
the theoretical equilibrium predictions.

any move between the timetw andtw + τ is therefore

ci(tw + τ, tw) =
tw+τ∏
t=tw

[
1− 2ni(t)

3N
Ai(t)

]

∼ exp

[
−

tw+τ∑
t=tw

2ni(t)

3N
Ai(t)

]
(4)

and the expectation value of the persistence isC(tw + τ, tw) =
∑

i ci(tw + τ, tw).
At high temperatures in thermodynamical equilibrium we expect that the local

configuration around the celli evolves through a set of similar configurations typical of the
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C(tw+  tw ) 

C( tw+  tw ) 

Figure 4. Persistence functionC(tw + τ, tw) for tw = (4k)N/3 with k = 1, . . . ,5. (a) At high
temperatures (β = 0.5) the persistence function is independent oftw and decreases exponentially
fast. (b) At low temperatures (β = 108) C(tw + τ, tw) depends ontw and shows a slow decay. The
curves correspond to fits of the formC(tw + τ, tw) ∼ C0(

tw+t0
tw+t0+τ )

α with α = 2.5, t0 = 2N and
C0 = N .
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whole system. Therefore, for largeτ ,
∑tw+τ

t=tw 2ni(t)Ai(t) ' 2nAτ . This leads to a persistence
function which is independent oftw and decreases exponentially fast. This prediction is in
good agreement with the results from simulations forβ 6 1 where we obtain best-fit values
for nA equal to 0.9, 0.83 and 0.42 forβ = 0, 0.5 and 1, respectively.

At low temperatures, almost only five-, six- and seven-sided cells are present in the system.
We can restrict consideration to T1 moves which either leave the energy unchanged or reduce
it. The former act to move pairs of seven-sided cells, pairs of five-sided cells and five–seven
couples with adjacent pairs of six-sided cells. Pairs of five–seven couples are brought together
by this motion and annihilate to produce four six-sided cells. The probability that between
time t andt + 1 a five–seven couple produces a T1 move in a given celli is proportional to the
numberM5|7 of five–seven couples in the system:nA ∝ M5|7.

The cellular pattern evolves reducing the number of five–seven couples. This happens
when two five–seven couples are close together and a T1 move annihilates both. The number of
couples that annihilate per unit of time (dM5|7

dt ) is proportional to the probability for two couples

to be close together which, ignoring correlations, is proportional to(
M5|7
N
)2. This implies

M5|7 ∝ (t + t0)−1 and consequently,
∑tw+τ

t=tw 2ni(t)Ai(t) ∼ α ln(tw + t0 +τ)−α ln(tw + t0), with
α being a coefficient which depends on the details of the annihilation process. By substituting
into equation (4), we getC(tw + τ, tw) ∼ C0(

tw+t0
tw+t0+τ )

α. In figure 4 this expression is compared

with the results from the simulations forβ = 108. When tw < 10N the behaviour of the
persistence function is in good qualitative agreement with this crude theoretical prediction
with fit parametersα ' 2.5, t0 = 2N andC0 = 1, but for large waiting timestw > 100N the
dynamics become slower.

In fact the recent spin-glass work [4] emphasizes that ageing in two-time quantities
continues for both waiting timetw and relative timeτ much greater than the characteristic
settling timescale for one-time quantities. Hence it would be of interest to extend these studies
to much longer run times, as well as to higher dimensions.

In summary, in a minimalist model of a continuous network subject to stochastic dynamics
determined by a simple local topological ‘energy’ and a randomizing temperature we have
identified a dynamical phase transition and have distinguished two phases: ‘liquid’ at high
temperatures and ‘glass’ at low temperatures. The dynamics isfast and equilibrating from
any starting state in theliquid phase andslowandageingin theglassphase which is achieved
from a random starting state. In our explicit characterization the dynamics become slow for
β < 1 and the transition to the glass phase is around the pointβ = 2.4.

Although the micro-dynamics we have considered is idealized and chosen for minimalist
study, it is interesting to compare our results with those observed in nature. Most
undifferentiated biological tissues are space-filling assemblies of cells where the side
distribution is centred aroundn = 6 and the second momentµ2 takes values between 0.5
and 1.2; for instance,µ2 = 0.53 in thehuman epidermis[11], 0.6 6 µ2 6 1.1 in vegetable
leaves [12],µ2 = 0.68 in thecucumber epitheliaandµ2 = 1.00 in thehuman amnion[1].

We have found slow dynamics in systems with a low amount of disorder (β > 1 and
µ2 < 0.5) and fast dynamics in systems with higher disorder (β < 1 andµ2 > 0.5). One
might speculate that the ‘ideal’ biological tissue must fit the compromise between low disorder
(homogeneity) and fast dynamics (efficient recovering of perturbations), implying a structure
with a value ofµ2 a little above 0.5.
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